Reductive Elimination

- Reductive Elimination (RE) is the reverse of Oxidative Addition (OA). It is a very
 important process that is often the last step in catalytic cycles involving joining
 two carbon fragments together.
- The formal oxidation state of the metal is reduced by 2 units.

- RE favoured for complexes that are:
 - sterically hindered (*i.e.* bulky ligands).
 - electron poor (*i.e.* high oxidation state metal, poor donor ligands, overall +ve charge on complex).
- RE less well studied than OA because complexes that undergo RE are generally less stable.
- RE is particularly facile for: $d^6 \rightarrow Pd^{IV}$, Pt^{IV} , Rh^{III} , Ir^{III} $d^8 \rightarrow Ni^{II}$, Pd^{II} , Au^{III}
- Reductive Elimination of H–H, R–H, R–R, R–SiMe₃, R–COR, H–COR is often favoured for thermodynamic reasons. Elimination of the above fragments always proceeds by a *concerted* mechanism (elimination of relatively non-polar X–Y).
- Eliminations that involve H (e.g. H₂, H-R, HCOR) are particularly fast. This is probably due to a lower kinetic barrier due to a relatively stable σ-complex (^H_{Lx}) along the reaction pathway.

Reductive Elimination

- As there are several mechanisms for OA, the principle of microscopic reversibility (which states that a reversible reaction proceeds by the same mechanism in the forward and reverse directions) suggests that RE should show the same variety. However, most RE goes by a concerted mechanism.
- Concerted RE (as with concerted OA) occurs with retention of configuration:

 Octahedral d⁶ complexes tend to undergo RE readily. Usually this occurs after initial loss of a ligand to form a more reactive 5-coordinate complex:

Reductive Elimination

• For d⁶ 5-coordinate complexes, square pyramidal or Y-type distorted TBP geometry is preferred over regular trigonal bipyramidal geometry.

• The small angle (~70°) between the two leaving groups in Y-type distorted TBP geometry is thought to facilitate formation of the transition state for reductive elimination.

• After reductive elimination, a T-shaped 3-coordinate species is formed. If the above mechanism is correct, then oxidative addition at 3-coordinate $RhCl(PR_3)_2$ should also be facile. Indeed, $RhCl(PPh_3)_2$ formed by dissociation of one PPh₃ from $RhCl(PPh_3)_3$ undergoes oxidative addition with H₂ at a rate at least 104 times faster than 4-coordinate $RhCl(PPh_3)_3$.

• The same reversibility argument also applies to RE of alkyl halides for which an S_N^2 pathway is operative in the oxidative addition direction:

RE in Square Planar d⁸ Complexes

Square planar complexes show a variety of mechanisms for reductive elimination:

1) Dissociative; 2) Non-dissociative; 3) Associative:

Irrespective of whether RE is dissociative, non-dissociative or associative, in order for concerted RE to occur, the two leaving groups must be cis to one another.

Investigations of Reductive Elimination

RE Mechanisms can be probed by kinetics:

- For the dissociative RE of ethane from *cis*-[PdMe₂(PPh₃)₂], addition of PPh₃ retards the rate of reaction (rate ∝ 1/[PPh₃]). This indicates that PPh₃ dissociation takes place before RE. It is not due to the conversion of [PdMe₂(PPh₃)₂] to [PdMe₂(PPh₃)₃] as this is not observed by NMR spectroscopy.
- The rates of RE differ hugely for the complexes shown below:

- Rate of RE lower for **B** than **A** because *cis* to *trans* isomerization must occur before RE can occur.
- Although the two methyl groups in A and C are *cis*, reductive elimination is much slower for C because phosphine dissociation is so much slower with a chelating phosphine.
- For complex **D**, the TRANSPHOS ligand does not allow the methyl groups to adopt a cis-conformation, so reductive elimination is prevented.

Investigations of Reductive Elimination

Mechanisms can also be probed by crossover experiments:

When a solution containing a 1:1 mixture of cis-[Pd(CH₃)₂(PPh₃)₂] and cis-[Pd(CD₃)₂(PPh₃)₂] is heated, reductive elimination occurs to give only C₂H₆ and C₂D₆. No CH₃CD₃ is formed. This rules out coupling between R groups of different molecules of the complex (an intermolecular mechanism) or free methyl radicals which would be sufficiently long-lived to migrate in solution from one molecule to the next.

Binuclear Reductive Elimination:

- Binuclear oxidative addition/reductive elimination is important for metals that prefer to change their oxidation state by one, rather than two units.
- 2 [H−Co(CO)₄] → [Co₂(CO)₈] + H₂ (radical mechanism involving H atom transfer)
- $[H-Mn(CO)_5] + [PhCO-Mn(CO)_5] \rightarrow [Mn_2(CO)_{10}] + PhCHO$