Reductive Elimination

- Reductive Elimination (RE) is the reverse of Oxidative Addition (OA). It is a very important process that is often the last step in catalytic cycles involving joining two carbon fragments together.
- The formal oxidation state of the metal is reduced by 2 units.

- RE favoured for complexes that are:
	- sterically hindered (*i.e.* bulky ligands).
	- electron poor (*i.e.* high oxidation state metal, poor donor ligands, overall +ve charge on complex).
- RE less well studied than OA because complexes that undergo RE are generally less stable.
- **RE** is particularly facile for: $d^6 \rightarrow P d^{IV}$, Pt^{IV}, Rh^{III}, Ir^{III} $d^8 \rightarrow N i^{\parallel}$, Pd^{II}, Au $^{\parallel \parallel}$
- Reductive Elimination of H-H, R-H, R-R, R-SiMe₃, R-COR, H-COR is often favoured for thermodynamic reasons. Elimination of the above fragments always proceeds by a *concerted* mechanism (elimination of relatively non-polar X–Y).
- **Eliminations that involve H (e.g. H₂, H-R, HCOR) are particularly fast. This is probably due to a** lower kinetic barrier due to a relatively stable σ -complex ($\mu_{\rm xM}$) along the reaction pathway. H

Reductive Elimination

- As there are several mechanisms for OA, the principle of microscopic reversibility (which states that a reversible reaction proceeds by the same mechanism in the forward and reverse directions) suggests that RE should show the same variety. However, **most RE goes by a concerted mechanism.**
- Concerted RE (as with concerted OA) occurs with retention of configuration:

Dianally 10 Complexes tend to undergo RE readily. Usually this occurs after initial loss of a ligand to form a more reactive 5-coordinate complex:

Reductive Elimination

■ For d⁶ 5-coordinate complexes, square pyramidal or Y-type distorted TBP geometry is preferred over regular trigonal bipyramidal geometry.

The small angle (\sim 70^o) between the two leaving groups in Y-type distorted TBP geometry is thought to facilitate formation of the transition state for reductive elimination.

 After reductive elimination, a T-shaped 3-coordinate species is formed. If the above mechanism is correct, then oxidative addition at 3-coordinate RhCl(PR₃)₂ should also be facile. Indeed, RhCl(PPh₃)₂ formed by dissociation of one PPh₃ from RhCl(PPh₃)₃ undergoes oxidative addition with H_2 at a rate at least 104 times faster than 4-coordinate RhCl(PPh₃)₃.

The same reversibility argument also applies to RE of alkyl halides for which an S_{N} 2 pathway is operative in the oxidative addition direction:

RE in Square Planar d⁸ Complexes

Square planar complexes show a variety of mechanisms for reductive elimination:

1) Dissociative; 2) Non-dissociative; 3) Associative:

 Irrespective of whether RE is dissociative, non-dissociative or associative, in order for *concerted* RE to occur, **the two leaving groups must be** *cis* **to one another.**

Investigations of Reductive Elimination

RE Mechanisms can be probed by kinetics:

- For the dissociative RE of ethane from *cis*-[PdMe₂(PPh₃)₂], addition of PPh₃ retards the rate of reaction (rate $\propto 1/$ [PPh₃]). This indicates that PPh₃ dissociation takes place before RE. It is not due to the conversion of $[\text{PdMe}_2(\text{PPh}_3)_2]$ to $[\text{PdMe}_2(\text{PPh}_3)_3]$ as this is not observed by NMR spectroscopy.
- The rates of RE differ hugely for the complexes shown below:

- Rate of RE lower for **B** than **A** because *cis* to *trans* isomerization must occur before RE can occur.
- Although the two methyl groups in **A** and **C** are *cis*, reductive elimination is much slower for **C** because phosphine dissociation is so much slower with a chelating phosphine.
- For complex **D**, the TRANSPHOS ligand does not allow the methyl groups to adopt a *cis*-conformation, so reductive elimination is prevented.

Investigations of Reductive Elimination

Mechanisms can also be probed by crossover experiments:

■ When a solution containing a 1:1 mixture of *cis*-[Pd(CH₃)₂(PPh₃)₂] and *cis*-[Pd(CD₃)₂(PPh₃)₂] is heated, reductive elimination occurs to give only $\mathsf{C_2H_6}$ and $\mathsf{C_2D_6}.$ No $\mathsf{CH_3CD_3}$ is formed. This rules out coupling between R groups of different molecules of the complex (an intermolecular mechanism) or free methyl radicals which would be sufficiently long-lived to migrate in solution from one molecule to the next.

Binuclear Reductive Elimination:

- Binuclear oxidative addition/reductive elimination is important for metals that prefer to change their oxidation state by one, rather than two units.
- 2 $[H-Co(CO)₄]$ \rightarrow $[Co₂(CO)₈]$ + H₂ (radical mechanism involving H atom transfer)
- $[H-Mn(CO)_{5}] + [PhCO-Mn(CO)_{5}] \rightarrow [Mn_{2}(CO)_{10}] + PhCHO$